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A general theorem on the motion of a fluid with friction and a few 
results derived from it* 

The equations of motion for an incompressible fluid with friction can be written as 
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Here p represents the density, u, v, w the velocity components, X, Y, Z the components 
of the external force per unit of volume and Xx, X v, etc. the stress components on planes 
perpendicular to the coordinate axes. 

If p is the pressure and # the friction coefficient, the latter quantities are given by the 
equations 

Ou 
Xx  = - p  + 2#-a--, etc., (3) 

ox  

Xu = Yz = # + , etc. (4) 

§2. We assume that a given space r ,  bounded by a surface a (or more than one surface), 
is entirely filled with fluid. The space and surface elements are denoted by d'r and da, 
respectively, and the integrals appearing in the equations which follow extend over the whole 
of the space 7- or the complete surface a. The latter might be the interface between the fluid 
and a solid, or else an arbitrary surface within the fluid mass. We shall denote by n the 
outward normal with respect to the space r ,  by a,  /3, 3' the angles between this normal and 
the coordinate axes and by Xn,  ]In, Zn the stress components on the surface, so that 

Xn = Xx  cos a + Xy cos/3 + Xz  cos 7 ,  etc. (5) 

Now, the theorem in question can be obtained if we assume two states of motion, both of 
which satisfy the equations of motion. For thefirst state of motion we shall use the symbols 
introduced above, for the second the same symbols with primes whenever these are necessary. 

* English translation of H.A. Lorentz, Eene algemeene stelling omtrent de beweging eerier vloeistof met 
wrijving en eenige daamit afgeleide gevolgen. Zittingsverslag van de Koninklijke Akademie van Wetenschappen 
teAmsterdam 5 0896) 168-175. 
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This second state satisfies equations which are identical with (1) - (5). There is no need to 
write these down separately, as we can denote these by (1') - (5'). 

§3. Let us now consider the integral 

= f (u ,x .  + v'Yn + w'Zn) do'. 

By making use of the relations (5) and realising that for an arbitrary function cp 

f ~o cos a do- = f °~° ~ x x  d~"  , 

f ~o cos/3da = ~ d r ,  etc., 

we find for that expression 

f ] f~ = [ Ox + Oy + 0----~-- + etc. dx. 

Here and later the word "etc." will be used to indicate that terms must be added, which 
follow from the expression as it has been written down, by applying twice a cyclic transposition 
of symbols. 

We can now divide ~2 in two parts. The first reads 

and the second 

S~l=fru,(ox~ ox~ ox,~ etc.]dr 
t - ~ -  + -b~-y + --~-) + J [  

or, upon substitution of (3) and (4) and having regard to (1') 

f~2 = # I Ox Ox + etc" + ~ + ~ x  \ O y  + Ox ] + etc" dT. 

Since this expression does not change upon interchanging u, v, w and u', v', w', we will 
find the same result if we proceed from 

~' = f (uX" + vY'. + ~oZ'~) d ° ,  

and treating it in the same way as FL 
Therefore, writing 

a ~ = f _  u + + +etc.  d r ,  
J 

we have 
- ~ '  = ~, - ~. 
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Now we substitute in fll and fl~ the values of 

OX~ OXu OXz 
0----x- + ~ + 0----~-' etc., 

which follow from the equations (2) and (2'). 
Replacing 

Ou Ou Ou 
u-~z + v N  + W~z , etc. 

by 
2) O( v) o(uw) 

Ox + ~ + 0----'~' etc., 

which we are allowed to do because of (1) and (1'), we obtain the theorem 

(u'Xn + v'Yn + w'Zn)da - f (uXtn + vYr~ + wZ~n)da = 

[ (u, OU Ou'~ etc.] d'r - - = P / / k  O t - " - - ~ , )  + / [ ( u ' X  u X ' ) + e t c . ] d r +  

[ ~ + 0----if-- + 0---'7- - u 0--~ + 0---~ + 0- '-~ + etc. dr. 

(I) 

§4. First, we shall apply this theorem assuming that the two states of motion are stationary, 
that neither the one nor the other are influenced by external forces and that all velocities are 
infinitesimally small. The equation is then transformed into 

f (u'Xn +v'Yn +w'Zn) d a -  f + wZ~n) da = 0. (II) 

Apart from (1) and (1'), these two states of motion must now satisfy 

Op + # A u  = 0, etc. (6)  
Ox 

and 

p! 
- 0---x- + #Au '  = 0 etc. (6') 

For the first of these states we select one which actually exists in one way or another in the 
space r ,  with values of u, v, w etc. which are everywhere finite and continuous, for the 
second, on the other hand, an imaginary state which we shall define as follows. 

Let P be an arbitrary point in the space "r, B a small sphere with that particular point as 
its centre and with radius R, and let u', v', w ~ be such as would be the case when the fluid 
surrounding B extended into infinity with 

u' = c, v' = O, w' = 0 (with c an arbitrarily small constant) 
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at the surface of B and with 
t = Vt = W I = 0 

at infinity. 
Then we have, with P as the origin of the coordinate system and with r measuring distance 

from P,  

~, ,5 ,3 + ~ + , 

v~ 3 3 xy  3 xy  = - ~ R  ~-~ + ~R~-~, 

w~ 3 3 x z  3 x z  = - ~ n  c-~ + ~nc-~ ,  

from which we may readily derive the values of the stress components. 
Applying theorem (II) to the space between the spherical surface B and the surface a, 

allowing R to tend to 0, we find 

uv = ~ (ux + vy + wz) (x cos ot + y cos/3 + z cos 7) da + 

~ r #  -~f + Xn + ~3 Yn +--~  Zn da.  (7) 

Here up denotes the velocity u at the point P; since there exist similar equations for vp 
and we,  we have answered the question of how the velocity at an arbitrary point in space 
depends upon the velocities and stress components at the bounding surface. 

§5. One can use this result to determine how a given state of motion is "reflected" by a 
fixed plane surface along which the fluid cannot slide. To that end we shall first consider the 
following problem. 

To find the relationship between two states ofmotion (ul, vl, '//31, pl)and(u2, ?32, W2, P2), 
both of which extend in the space on the positive side of the yz-plane and which satisfy the 
conditions 

Ul = U 2 ,  731 = - - 7 3 2 ,  Wl = - - W 2  (8)  

everywhere on this plane. 
The solution is found by an application of (7) to both states of motion (such that the plane 

a is allowed to coincide with the yz-plane) and the employment of several mathematical 
artifices which, for the sake of brevity, have to be omitted here. Finally, we find for each point 
in the space considered 

- O U l  X 2 0191 

Om x 20pl 
?32 = - - V l  - -  2x--x'-" + - - - ' x -  , 

oy # oy . (9) 

., Oul , x z Opl 
w~ = -w l  - ~-6-;~ * --d-if;' 

Opl On1 
p2 = Pl + 2x-~z - 4#--~x 
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Indeed, it can be seen immediately that the first three equations are reduced to (8) for x = 0 
and a direct calculation will show that u2, v2, w2, P2 satisfy the equations of motion if this 
is true for Ul, Vl, Wl~ P l .  

As far as the "reflection" problem is concerned, we shall assume that the fixed wall 
coincides with the yz-plane and that the fluid will be on the positive side of the x-axis. We 
suppose that a state of motion M0 is generated, for instance by maintaining continually a 
velocity field at a small closed surface inside the fluid or by applying continually external 
forces on part of the fluid, this state of motion being known in the absence of the fixed wall 
and with the fluid extending in the space beyond the yz-plane (where x is negative). Let 
uo, v0, w0 be the velocities which exist on the yz-plane for this particular flow field. 

Now one can always imagine a state M1 in front of the yz-plane which, as far as the 
velocities are concerned, is the mirror image of what M0 would be beyond the yz-plane. On 
this plane the velocities of this state will read 

~1 ~ --UO~ 1)1 --~)0~ Wl ~ WO. 

We can now use the equations (9) to derive a state ME from the state M1 with velocities 
u2, v2, w2 satisfying 

u o + u 2 = 0 ,  v o + v 2 = 0 ,  w o + w 2 = 0 ,  

on the yz-plane. 
Thus, in the presence of the fixed wall, M2 is the state of motion which can co-exist with 

Mo. 

§6. If it were possible (§4) for us to generate a state of motion with infinitesimally small 
velocities C, C, w', which would satisfy 

U t =C~ V t =0~  W t = O  

on the surface of an infinitesimally small sphere B and 

U ! : ' / 3  t ~---'tO t : 0 

at the surface a, then we would obtain from (II) 

i f  up = 61r#cR (uX'n + vY~n + wZ'n) da. 

This would solve the problem of finding the velocities u, v, w at an arbitrary interior point 
when arbitrary velocities are given at the interface a. 

§7. We shall now assume that a solid body L is positioned within the space enclosed by 
the surface cr and select for (u, v, w) in (I) a state of motion M which is admissible when 
this body is maintained in a state of rest or has a given motion. 1 We select for (C, C, w') a 
stationary situation with infinitesimal velocities and without external forces, with 

U t = C ~  ~t____0~ ZO t = 0  

1 However, it must be possible for this motion to exist in a stationary situation (continual rotation of an 
axisymmetric body about its axis). 
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on the surface of L and 
U I ~ V # ~ W I ~ 0 

on a. Each surface integral of (I) now splits up into an integral on the interface a and one on 
the surface E of L. Since the first integral in (I), taken on E, is identical with the net force E 
which the body L experiences in the direction of the x-axis as a result of the motion M,  when 
multiplied by - c ,  we obtain 

- l i  S = = - -  (uX" +vY '  n + w Z ' ) d E - - 1  (uX' n +vY '  n + w Z ' ) d a +  
C C 

' i  s[ s'"" '"" '<'") ] +-c (u'X + v'Y + w'Z) d'r - -p-c u' t Ox + ~ + 0----~ + etc. d r .  

If the state of motion M does not involve external forces and if we are allowed to disregard 
the second-order terms, then the expression on the right is reduced to the first two terms; it is 
then possible to determine the force acting on L, as long as the velocities u, v, w are known 
on the surfaces E and a. One more term is involved when external forces X, Y, Z are present 
with the velocities still being infinitesimal, but, still, it is not necessary to know u, v and w at 
every point in space. This becomes necessary only when the second-order velocity terms are 
included, but it should be clear from the nature of the last term that we may substitute in it the 
values obtained from the equations of motion which are valid for infinitesimal velocities, that 
is, as long as we disregard terms which are of an even higher order. 

This formula has been derived for a certain application, the study of which we have not 
yet fully completed. 

Translated from Dutch by H.K. Kuiken (1995) 


